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Boundary effects on the nonequilibrium structure factor of fluids
below the Rayleigh-Bénard instability
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We consider a horizontal fluid layer between two rigid boundaries, maintained in a stationary thermal
nonequilibrium state below the convective Rayleigh-Be´nard instability. We derive an explicit expression for the
nonequilibrium structure factor in a first-order Galerkin approximation valid for negative and positive Rayleigh
numbersR up to the critical Rayleigh numberRc associated with the appearance of convection. The results
obtained for rigid boundaries by the Galerkin-approximation method are compared with exact results previ-
ously derived for the case of free boundaries. The nonequilibrium structure factor exhibits a maximum as a
function of the wave numberq of the fluctuations. This maximum is associated with a crossover from aq24

dependence for largerq to aq2 dependence for smallq. This maximum is present at both negative and positive
R, becomes pronounced at positiveR and diverges asR approaches the critical valueRc .
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I. INTRODUCTION

During the past years considerable effort has been
voted to the study of hydrodynamic fluctuations in liquids
stationary thermal nonequilibrium states, particularly whe
liquid layer is subjected to a constant temperature gradi
“T0. It turns out that density or temperature fluctuations
such nonequilibrium states become spatially long rang
even in the absence of any convective instabilities@1#.

The long-range nature of the fluctuations manifests its
as a wave-number-dependent anisotropic enhancement i
Rayleigh componentS(q) of the structure factor. The firs
correct calculation of the nonequilibrium structure factor o
fluid, without taking into account gravity or finite-size e
fects, was performed by Kirkpatricket al. using mode-
coupling theory@2# and later confirmed by fluctuating hydro
dynamics @3–6#. The main conclusion is that th
nonequilibrium enhancement ofS(q) is maximum for fluc-
tuations with wave vectorq'“T0, in which case it varies as
q24 with the wave numberq of the fluctuations. The diver
gence of the structure factor for smallq asq24 cannot go on
indefinitely up to wave numbers corresponding to mac
scopic wavelengths. Specifically, two sources can be ide
fied that will cause deviations from theq24 behavior at very
small wave numbers: gravity and finite-size effects. Grav
causes theq24 divergence to be quenched, the structure f
tor reaching a constant limit inq→0, as was elucidated b
Segrèet al. @7,8#. They found that the static structure fact
of a fluid subjected to a stationary temperature gradient¹T0
in the presence of gravity can be written as

S~q!5SEF11
S̃NE

0

s11

1

q4L42R
G , ~1!
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whereSE is the well-known isotropic expression for the in
tensity of the fluctuations in thermodynamic equilibrium,

SE5r2¸TkBT
g21

g
, ~2!

while S̃NE
0 represents the strength of the nonequilibrium e

hancement of the structure factor, and is given by

S̃NE
0 5sR1

~cP /T!L4

DT
2 ~¹T0!2. ~3!

In the equations above,s denotes the Prandtl number,R the
Rayleigh number,r the density,̧ T the isothermal compress
ibility, T the average temperature,g the heat-capacity ratio
cP the isobaric specific heat capacity, andDT the thermal
diffusivity. In Eqs. ~1! and ~3! we have also introduced th
finite heightL of the horizontal fluid layer so as to elucida
the connection ofS(q) with the Rayleigh numberR and to
facilitate a comparison with the results to be presented in
paper where finite-size effects will be considered. Howev
Eq. ~1! represents the bulk structure factor of the fluid wit
out any finite-size effects and one can readily verify tha
does not depend explicitly upon the finite heightL.

We note thatS(q), as given by Eq.~1!, contains an equi-
librium contribution and a nonequilibrium enhancement. T
equilibrium contributionSE is independent of the wave num
ber q and equals the traditional formula for the isotrop
Rayleigh-scattering intensity@9#. The nonequilibrium en-
hancement is proportional to the square of the tempera
gradient throughS̃NE

0 . For q4@R/L4, S(q) varies asq24,
in accordance with the asymptotic behavior first found
Kirkpatrick et al. @2#. This dependence of the nonequilibriu
contribution to the structure factor onq24 has been experi-
mentally verified by several small-angle Rayleigh-scatter
d-
©2002 The American Physical Society05-1
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experiments@10–13#. For q→0, the nonequilibrium struc-
ture factor reaches a constant value, which is a consequ
of the presence of gravity. The gravitationally induced sa
ration of theq24 divergence of the nonequilibrium structu
factor has been confirmed by Vailati and Giglio@14,15# from
ultra-low-angle light-scattering experiments.

As investigated by several authors@16–18#, the presence
of a temperature gradient also affects the ‘‘bulk’’ Brillou
component of the scattering spectrum, causing an anisotr
asymmetry between the two Brillouin peaks, which has b
observed experimentally@19–21#. This asymmetry effect on
the Brillouin lines is maximum whenqi“T0 and is zero
whenq'“T0, thus, just the opposite to the nonequilibriu
effects on the Rayleigh line. In addition, the presence o
temperature gradient only affects the shape of the Brillo
spectrum; however, it does not affect the total intensity
scattered light, since one of the Brillouin peaks shrinks j
the same as the other enhances@18#. In the present paper w
are concerned with nonequilibrium fluctuations as can
observed by two experimental techniques~low-angle static
light-scattering and shadowgraphy! which probe fluctuations
with wave vectorq'“T0 and which are sensitive to the tot
intensity of light scattered by the medium. Consequen
nonequilibrium effects on the Brillouin spectrum are not e
pected to play a role. For this reason and to simplify
calculations, we shall adopt in the present paper hydro
namic approximations~Boussinesq! which imply that the
density fluctuations are only caused by the temperature fl
tuations, neglecting the pressure fluctuations. This is equ
lent to neglecting the Brillouin components in the scatter
spectrum.

An evident shortcoming of Eq.~1! is that such a bulk
nonequilibrium structure factor is only valid for negativ
Rayleigh numbers. For any positiveR there is always some
finite value of the wave numberq for which S(q), as given
by Eq. ~1!, diverges. This shortcoming is a consequence
the fact that in the derivation of Eq.~1! for S(q), boundary
effects due to the finite heightL of the fluid layer have not
been incorporated. Various authors have studied finite-
effects on the nonequilibrium structure factor@22–26#. These
investigators have focused their attention exclusively on
situation close to the convective Rayleigh-Be´nard instability
and studied the divergence ofS(q) as the critical value of the
Rayleigh number is approached from below.

Finite-size effects on the nonequilibrium structure fac
have also been studied recently by Ortiz de Za´rateet al., who
first considered ‘‘stress-free’’ boundary conditions@27#, and
subsequently ‘‘no-slip’’ boundary conditions which we
evaluated in a first-order Galerkin approximation@28#, but
without considering the presence of gravity. Hence, the
sults thus obtained refer to the special case correspondin
R50. It is the purpose of the present paper to consider
boundary effects on the nonequilibrium contribution to t
structure factor for both positive and negative Rayle
numbers.

In a recent paper we have embarked on this program
considering ‘‘stress-free’’ boundary conditions@29#. We were
able to derive an explicit expression for the nonequilibriu
structure factor valid for both negative and positive values
03630
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R up to the critical Rayleigh number associated with the fi
convective instability, which for ‘‘stress-free’’ boundary con
ditions isRc527p4/4. The main conclusion was that, in th
nonequilibrium contribution to the Rayleigh component
the structure factor, finite-size effects cause a crossover f
the q24 divergence to aq2 dependence for extremely sma
wave numbers. This crossover fromq24 to q2 means that a
maximum in the Rayleigh-scattering intensity appears. T
position of this maximum is close to the critical wave num
ber qc for the appearance of convection. For positive Ra
leigh numbers the height of this maximum diverges as
convective instability is approached@29#.

The position and height of the maximum inS(q) will
depend on the boundary conditions considered. In our pr
ous publication@29# we adopted ‘‘stress-free’’ boundary con
ditions for the fluctuating velocity because of their mat
ematical simplicity. But these conditions correspond to
fluid layer bounded by two free surfaces which is rather u
realistic@30#. For the realistic case of a fluid bounded by tw
rigid solid plates the appropriate boundary conditions
‘‘no-slip’’ boundary conditions. The goal of the present pap
is to analyze the finite-size effects on the nonequilibriu
structure factor by considering the more realistic ‘‘no-slip
boundary conditions and comparing the results with
finite-size effects obtained with ‘‘slip-free’’ boundary cond
tions. In doing so, we shall obtain an expression forS(q) for
both negative and positive Rayleigh numbers below the c
cal Rayleigh number for a fluid between rigid walls. By an
lyzing the behavior of our general expression forS(q) near
the convective instability, we shall be able to make cont
with expressions and approximations obtained by previ
workers@22–26#.

We shall proceed as follows. In Sec. II, we present
linearized Boussinesq equations supplemented with ran
noise terms, which provide the commonly accepted star
point for dealing with thermal nonequilibrium fluctuations
fluids @22,24,31,32#, and we also review our previous resul
obtained for a fluid layer with two free boundaries@29#. Sec-
tion III contains the main results of the paper, where
consider a fluid layer between two rigid boundaries a
adopt a Galerkin-polynomial approximation@28,33#. In Secs.
IV and V we study the finite-size effects as they will appe
in low-angle light-scattering or shadowgraph experimen
respectively, and we discuss their relevance for the interp
tation of available experimental information. In Sec. VI w
shall perform a detailed analysis of the nonequilibrium flu
tuations close to the convective instability. In Sec. VII w
evaluate the so-called power of thermal fluctuations so a
make a detailed numerical comparison with the predictio
from the traditional Swift-Hohenberg model. Our concl
sions are summarized in Sec. VIII.

II. LINEARIZED FLUCTUATING BOUSSINESQ
EQUATIONS

We consider a fluid layer between two horizontal pla
separated by a distanceL. The fluid layer is subjected to a
temperature gradient in the vertical direction by maintain
the plates at two different temperatures. The size of the s
5-2
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tem in the two horizontalX- andY directions is much large
than the sizeL in the verticalZ direction.

To determine the structure factor of the fluid we consid
small fluctuations around the conductive solution. The
small fluctuations will be described by the linearized Bou
inesq equations supplemented with random noise terms
first considered by Zaitsev and Shliomis@31# and by Swift
and Hohenberg@22# for studying the influence of therma
noise close to the convective instability. Use of the Bou
inesq approximation to the full hydrodynamic equations i
plies that we neglect the sound modes and consider
density fluctuations caused by temperature fluctuati
@24,30#. We consider the stationary temperature gradie
¹T0, applied along theZ direction, so that¹T0 is positive
when the fluid layer is heated from above and negative w
heated from below. The gravitational forceg is directed in
the negativeZ direction. In this notation, the Rayleigh num
ber may be defined as

R5
aL4g•“T0

nDT
52

aL4g¹T0

nDT
, ~4!

wherea is the thermal expansion coefficient andn the kine-
matic viscosity of the fluid.

We shall evaluate the structure factor of the fluid ma
tained in a convection-free thermal nonequilibrium sta
where the average value^v& of the local fluid velocityv will
be zero. Such states correspond to both negative and pos
values of the Rayleigh numberR as long asR is smaller than
the critical valueRc . For this purpose we write the linearize
fluctuating Boussinesq equations in the form@22,29,32#

]

]t
~¹2w!5n¹2~¹2w!1agS ]2u

]x2
1

]2u

]y2D 1F1 , ~5a!

]u

]t
5DT¹2u2w¹T01F2 , ~5b!

whereu5T2T0 represents the local fluctuating temperatu
andw is the fluctuatingZ component of the fluid velocityv.
To eliminate the stationary pressure gradient from the eq
tions we find it convenient to consider Eq.~5a! for ¹2w,
rather than an equation for the fluctuating fluid velocityv
itself @30#. Finally, F1 and F2 represent the contribution
from rapidly varying short-range fluctuations and are rela
to Landau’s random stress tensordT and random heat flow
dQ in such a way that@26#

F15
1

r
$“3@“3~“•dT!#%z , ~6a!

F252
DT

lT
“~dQ!, ~6b!

wherer andlT are the density and the thermal conductiv
of the fluid, while the subscriptz in Eq. ~6a! indicates thatF1
has to be identified with theZ component of the vecto
between the curly brackets. We finally note that in t
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Boussinesq Eq.~5b! the coefficient multiplying¹2u is usu-
ally identified with the thermal diffusivity of the fluidDT .
For consistency, we have also expressed the prefactor o
second random noise term in Eq.~6b! in terms of the same
diffusivity DT @34#.

Since in practice the fluid layer is confined between t
horizontal plates separated by a~small! distanceL, the non-
equilibrium structure factor will be affected by the presen
of boundary conditions in theZ direction. To accommodate
the boundary conditions, we apply a Fourier transformat
of the fluctuating Boussinesq equations~5! in space and in
time, but restrict the spatial Fourier transformation to t
X-Y plane@27–29#. We thus obtain the following set of lin
ear stochastic differential equations:

S ivD2nD 2 agqi
2

¹T0 iv2DTDD S w~v,qi ,z!

u~v,qi ,z!
D 5S F1~v,qi ,z!

F2~v,qi ,z!
D ,

~7!

whereqi is the component of the wave vectorq in the X-Y
plane andD the differential operator

D5F d2

dz2
2qi

2G . ~8!

The random noise termsF1(v,qi ,z) andF2(v,qi ,z) in Eq.
~7! are related to the partial Fourier transformsdT(v,qi ,z)
of the random stress tensor anddQ(v,qi ,z) of the random
heat flux. The actual expressions are a bit complicated
can be found elsewhere@28#.

In this paper we are interested in the structure factor
the nonequilibrium fluid,S(v,qi ,z,z8), which is related to
the autocorrelation function of the temperature fluctuatio
by @27,28#

^u* ~v,qi ,z!u~v8,qi8 ,z8!&5
~2p!3

a2r2
S~v,qi ,z,z8!d~v2v8!

3d~qi2qi8!. ~9!

Integration over the frequency gives the static structure f
tor S(qi ,z,z8)5(2p)21*dvS(v,qi ,z,z8), which is the
main interest of this paper. The result obtained
S(qi ,z,z8) will depend on the boundary conditions atz50
andz5L. In a previous publication@29# we calculated, from
Eq. ~7!, S(qi ,z,z8) using stress-free boundary conditions f
the vertical velocity and perfectly conducting walls for th
temperature. For that purpose, we representedw(v,qi ,z)
and u(v,qi ,z) as a series expansion in a complete set
eigenfunctions of the differential operator in Eq.~7!, satisfy-
ing the corresponding boundary conditions. Because of
simplicity of the boundary conditions considered in Re
@29#, it was possible to obtain an exact expression
S(qi ,z,z8), with no other simplifications than those con
tained in the Boussinesq approximation~5!. The final results
may be expressed as@29#
5-3
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S~qi ,z,z8!5SEFd~z2z8!1S̃NE
0 (

N51

`

LN
F~ q̃i!

3sinS Npz

L D sinS Npz8

L D G , ~10!

whereq̃i5qiL. In Eq. ~10! SE is the intensity of the fluctua
tions in thermodynamic equilibrium, given by Eq.~2!, and
S̃NE

0 represents the strength of the nonequilibrium enhan
ment of the structure factor as defined by Eq.~3!. To facili-
tate a comparison with the calculation for the case of ri
boundaries, we have adopted here a definition ofS̃NE

0 in Eq.
~3! that is slightly different from the one in our previou
publication @29#. Furthermore, we have introduced in E
~10! the quantitiesLN

F(q̃i), which represent the normalize
nonequilibrium enhancements per mode and are given b

LN
F~ q̃i!5

2

L

1

s11

q̃i
2

~ q̃i
21N2p2!32Rq̃i

2
. ~11!

The first term in Eq.~10! is the static structure factor of
fluid in thermodynamic equilibrium; it is short ranged, pr
portional to a delta function, and it is not affected by a
finite-size effects@9#. The second term in Eq.~10! represents
the nonequilibrium enhancement of the structure factor. T
nonequilibrium enhancement is proportional to (¹T0)2

through the expression~3! for S̃NE
0 ; it depends on the gravi

tational acceleration constantg through the appearance of th
Rayleigh number in Eqs.~10! and~3!, and it depends on the
finite heightL of the fluid layer explicitly in Eq.~10! and
also throughq̃i5qiL. It is interesting to note that Eq.~10! is
valid for both negative and positive Rayleigh numbers, p
vided thatR,Rc527p4/4. For R>Rc there always exist
values ofqi for which the right-hand side of Eq.~10! di-
verges. Of course, the valueRc527p4/4 equals the well-
known value obtained form a linear stability analysis of t
Boussinesq equations with no-slip boundary conditions@30#.

III. SOLUTION FOR TWO RIGID BOUNDARIES

While ‘‘stress-free’’ boundary conditions, considered in
previous publication@29#, are convenient for obtaining
simple and exact solution of the linearized Boussinesq eq
tions, a fluid bounded by two free surfaces is an unreali
representation of the actual experimental situation@30,33#.
For a fluid layer between two rigid walls we can continue
assume perfectly conducting walls, but we need to ad
‘‘no-slip’’ boundary conditions for the local velocity. Hence
the boundary conditions to be considered in this paper a

u~v,qi ,z!50 at z50,L,

w~v,qi ,z!50 at z50,L, ~12!

d

dz
w~v,qi ,z!50 at z50,L.
03630
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For the boundary conditions~12!, the method employed
in Ref. @29# to calculate the static structure factor exactly
not adequate. The eigenvalues and eigenfunctions of the
ferential operator on the left-hand side of Eq.~7! satisfying
the new boundary conditions~12! cannot be calculated ex
plicitly. As discussed elsewhere@24,30,33#, to calculate the
eigenvalues in this case an algebraic equation is obta
which cannot be solved explicitly. The spectrum of the d
ferential operator continues to be discrete, but the set of
genvalues and eigenfunctions can only be calculated num
cally. Hence, for the case of ‘‘no-slip’’ boundary condition
an explicit evaluation of the structure factor can only be p
formed approximately.

It turns out that a suitable approximation scheme is
tained by using the Galerkin method@28#. Thus we represen
the solutions for the velocity fluctuations and temperat
fluctuations in terms of first-order Galerkin polynomials,

w~v,qi ,z!5w0~v,qi!S z

L
2

z2

L2D 2

,

u~v,qi ,z!5u0~v,qi!S z

L
2

z2

L2D . ~13!

Note that the polynomials in Eq.~13! satisfy the required
boundary conditions~12!. The results obtained with this ap
proximation scheme will depend on the adoption of Galer
test functions. Another possible choice would be t
Chandrasekhar function@30#. We have chosen the polynom
als ~13! because they lead to simpler analytical results a
they do not contain constants to be determined numerica
Moreover, in studies of linear stability, the choice~13! is
considered to be optimal owing to the variational structure
the underlying problem@33#. Anyway, as we shall see, th
choice~13! produces reasonable results when the asympt
behavior of the structure factor for largeq is compared with
the behavior expected form the exact ‘‘bulk’’ result@see Eq.
~30! below#.

Following a standard procedure, we evaluate the am
tudesu0(v,qi) andw0(v,qi) by imposing the condition tha
the ansatz~13! represents an exact solution of Eq.~7! in the
subspace generated by the corresponding Galerkin pol
mial @33#. Substituting Eq.~13! into Eq. ~7! and projecting
the first equation onto the first Galerkin polynomial and t
second equation onto the second Galerkin polynomial,
obtain the set of two algebraic equations,

H~v,qi!•S w0~v,qi!

u0~v,qi!
D 5S G1~v,qi!

G2~v,qi!
D , ~14!

where the matrixH(v,qi) is given by
5-4
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H~v,qi!5S 2 iv~121qi
2L2!

630L
2nF ~121qi

2L2!2

630L3
1

4

7L3G agqi
2L

140

“T0L

140

ivL

30
1

DT~101qi
2L2!

30L

D ~15!
ki
in

t
a
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and where we have introduced the quantities

G1~v,qi!5E
0

LS z

L
2

z2

L2D 2

F1~v,qi ,z!dz,

G2~v,qi!5E
0

LS z

L
2

z2

L2D F2~v,qi ,z!dz, ~16!

which are the projections onto the corresponding Galer
polynomial of the Langevin random noise terms. Upon
verting the matrixH(v,qi), the solution of Eq.~14! for the
amplitudesw0(v,qi) andu0(v,qi) can be obtained. Explici
expressions are long and not very informative, so they
not presented here. However, explicit results obtained u
integration of the expression foru0(v,qi), will be presented
in the sequel.

We focus our attention on the calculation of the struct
factor, which is related by Eq.~9! to the autocorrelation func
tion of the temperature fluctuations. For the calculation
this quantity, we need the autocorrelation function betwe
the projections of the Langevin random noise terms onto
Galerkin polynomials, defined by Eq.~16!. The cross-
correlation^G1* (v,qi)•G2(v8,qi8)& is zero, because the ran
dom current tensor and the random heat flux are uncorrel
@4#. We now proceed to calculate the autocorrelat
functions ^G1* (v,qi)•G1(v8,qi8)& and ^G2* (v,qi)
•G2(v8,qi8)&. We first consider̂G2* (v,qi)•G2(v8,qi8)& for
the random noise associated with the temperature fluc
tions. Using the definition ofG2(v,qi), given by Eq.~16!,
the definition ofF2(v,qi ,z) as a function of the random hea
flow, given by Eq.~6b!, and the equilibrium correlations be
tween the different components ofdQ(v,qi ,z), as given by
Schmitz and Cohen@4#, we obtain
a-

tu

re
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^G2* ~v,qi!•G2~v8,qi8!&5
2kBT2lT

r2cP
2

qi
2L2110

30L
~2p!3

3d~v2v8!d~qi2qi8!. ~17!

The autocorrelation function̂G1* (v,qi)•G1(v8,qi8)& has al-
ready been evaluated by a similar procedure in a previ
publication@28# and is given by

^G1* ~v,qi!•G1~v8,qi8!&52kBT
n

r
qi

2
qi

4L4124qi
2L21504

630L3

3~2p!3d~v2v8!d~qi2qi8!.

~18!

Now we have all the required information to obtain th
dynamic structure factorS(v,qi ,z,z8) of the fluid. Integra-
tion over the frequencyv gives the static structure facto
After some long, but otherwise straightforward calculatio
we find that the static structure factor for the case of ‘‘n
slip’’ boundary conditions, in the first-order Galerkin ap
proximation, can be written as

S~qi ,z,z8!5SEF30

L
1S̃NE

0 L0
R~ q̃i!G S z

L
2

z2

L2D S z8

L
2

z82

L2 D ,

~19!

where, similarly to Eq.~10!, we have introduced the quantit
L0

R(q̃i) which represents the normalized nonequilibrium e
hancement for two rigid boundaries in the first-order Gal
kin approximation, and is given by
L0
R~ q̃i!5

30

L

1

s1
~ q̃i

2110!~ q̃i
2112!

~ q̃i
2112!21360

27q̃i
2

28~ q̃i
2110!@~ q̃i

2112!21360#227q̃i
2R

. ~20!
the
id
ed
im-
In Eq. ~19!, SE is again the intensity of the thermal fluctu
tions in thermodynamic equilibrium, defined by Eq.~2!, and
S̃NE

0 is the same nonequilibrium enhancement of the struc
factor defined by Eq.~3!. Equations~19! and ~20! for the
nonequilibrium structure factor represent our principal
re

-

sults for the combined effects of gravity and finite size on
nonequilibrium structure factor of a fluid between two rig
boundaries. The remainder of this paper will be concern
with an analysis of some of the physical consequences
plied by these results.
5-5
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JOSÉM. ORTIZ de ZÁRATE AND JAN V. SENGERS PHYSICAL REVIEW E66, 036305 ~2002!
It is interesting to compare the approximate solution
the case of two rigid boundaries, given by Eqs.~19! and~20!,
with the exact solution for the case of two free boundari
given by Eqs.~10! and ~11!. First of all, we have obtained
here only the first term in the Galerkin expansion for t
structure factor for the case of two rigid boundaries. Th
Eq. ~19! is equivalent to the first term in the series expans
~10! for the structure factor of a fluid layer with two fre
boundaries. Truncating Eq.~10! at N51 is called the most-
unstable-mode approximation@22,29,31#, and, as we shal
see, it represents a good approximation to the exact solu
in particular for smallq.

As a second comment we note that, when¹T050, the
exact solution for two free boundaries, Eq.~10!, produces the
exact result for the structure factor in equilibrium, which
short ranged and proportional to a delta functiond(z2z8).
However, our approximate solution for two rigid boundari
contains a constant multiplying the Galerkin polynomia
Actually, what we obtain from Eq.~19! for the equilibrium
structure factor is the first term of the series expansion of
delta function in terms of the Galerkin polynomials. Ther
fore, this shortcoming is a consequence of having perform
the calculation in first order only.

The normalized nonequilibrium enhancement for the c
of two rigid boundaries in first order,L0

R(q̃i), has a structure

very similar to the general termLN
F(q̃i), given by Eq.~11!,

for the case of two free boundaries. With regards to the
pendence on the Prandtl number, the 1 in the denominato
the term 1/(s11), appearing in Eq.~11! for two free bound-
aries, is replaced with a rational function ofq̃i , which rap-
idly approaches unity asq̃i increases. With regards to th
dependence on the Rayleigh number, this is also very s
lar: the factor (q̃i

21N2p2)3 in Eq. ~11! for two free bound-
aries is simply replaced with a polynomial of sixth order
q̃i .

The approximate solution for two rigid boundaries brea
down when

R5
28

27

~ q̃i
2110!@~ q̃i

2112!21360#

q̃i
2

. ~21!

In Eq. ~21! we recognize the threshold condition for the co
vective instability, as calculated by the Galerkin method
first order @33#, and we recover the well-known results
linear stability theory from studying the divergences of t
structure factor, which are associated with the appearanc
convection. For Eq.~21! to hold, the Rayleigh numberR has
to be larger than a critical Rayleigh numberRc.1750. For
this critical Rayleigh number, Eq.~21! yields @33# q̃c
.3.1165. These critical values in the first Galerkin appro
mation are to be compared with the exact threshold va
for the case of two rigid boundaries, which are@33# Rc

.1708 andq̃c.3.1163. We note again that introduction
boundary conditions in the calculation of the structure fac
results in an extension of the validity of Eq.~1! for the struc-
ture factor at negative Rayleigh numbers to a finite range
positive Rayleigh numbers. For the case of two rigid bou
03630
r

,

,
n

n,

.

e
-
d

e

e-
of

i-

s

-

of

-
s

r,

f
-

aries, the interval of positiveR for which it is possible to
calculate the structure factor with a linear theory is larg
than for the case of two free boundaries. This is a con
quence of the fact that ‘‘no-slip’’ boundary conditions a
more stabilizing than ‘‘stress-free’’ boundary conditions.

IV. CONSEQUENCES FOR LIGHT-SCATTERING
EXPERIMENTS

The nonequilibrium fluctuations can be detected in sm
angle light-scattering experiments@10–15#. The scattering
medium in such experiments is a thin horizontal fluid lay
bounded by two parallel plates whose temperatures can
controlled independently so as to establish a temperature
dient across the fluid layer. The temperature gradient can
parallel or antiparallel to the direction of gravity. The hor
zontal plates are furnished with windows allowing laser lig
to propagate through the fluid in the direction parallel to t
gravity and to the temperature gradient. Light scattered o
an anglef arises from fluctuations with a wave number su
that @9#: q52q0 sin(f/2), whereq0 is the wave number of
the incident light inside the scattering medium. To obse
any nonequilibrium fluctuations one needs to observe
scattered light at small wave numbers and, hence, at s
scattering angles.

From electromagnetic theory@9# it follows that the scat-
tering intensityS(q) is obtained from an integration of th
structure factor over the scattering volume. When the w
vector of the incident light is parallel to the temperature g
dient and for very small scattering angles~scattering vector
q'“T0), the total intensity of scattered light is proportion
to @24,27,29#

S~qi ,q'!5
1

LE0

LE
0

L

e2 iq'(z2z8)S~qi ,z,z8!dzdz8, ~22!

where it is assumed@24# that the scattering volume extend
over the full height of the fluid layer and that the thickness
the scattering volumeLs is larger thanqi

21 . In an actual
light-scattering experiment the magnitude of the compone
qi andq' of the scattering vector are not independent va
ables, they are both related to the scattering angle@27,29#
and for the interpretation of small-angle experiments o
may use in practice the approximationqi.q, q'.0.
Hence, the nonequilibrium structure factorS(qi ,q'), de-
fined by Eq.~22!, depends only on the magnitudeq of the
scattering wave vectorq. In the remainder of this paper w
restrict ourselves to this small-angle approximation.

To obtain the exact expression for the structure factor
the small-angle approximation,S(qi.q,q'.0), for the
case of two free boundaries, we substitute Eq.~10! into Eq.
~22! and perform the double integration in Eq.~22!. Intro-
ducing a dimensionless wave numberq̃5qL, we thus obtain

S~ q̃!5SE@11S̃NE
0 S̃NE

F ~ q̃!#, ~23!

where we have introduced the normalized nonequilibri
enhancement for free boundaries,S̃NE

F (q̃), such that
5-6
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S̃NE
F ~ q̃!5 (

N51

`

LN
F~ q̃!

2L@12cos~Np!#

N2p2
~24!

with the nonequilibrium enhancement per mode,LN
F(q̃),

given by Eq.~11! with q̃5q̃i .
To obtain the nonequilibrium structure factor at sm

scattering angles for the case of two rigid boundaries,
substitute Eq.~10! into Eq. ~22! and perform the double in
tegration in Eq.~22!, to obtain

S~ q̃!5SEF5

6
1S̃NE

0 S̃NE
R ~ q̃!G , ~25!

where the normalized nonequilibrium enhancement for ri
boundaries,S̃NE

R (q̃) is given by

S̃NE
R ~ q̃!5

L

36
L0

R~ q̃! ~26!

with the first-order nonequilibrium enhancement,L0
R(q̃),

given by Eq.~20! with q̃5q̃i . We note that for the case o
two free boundaries the exactS(q̃), given by Eq.~23!, is
written as the sum of an isotropic equilibrium contributio
SE , and a nonequilibrium contribution which is expressed
terms of a series expansion through Eq.~24!.

For the case of rigid boundaries, Eqs.~25! and ~26! rep-
resent the first Galerkin approximation in which the equil
rium contribution is 17%~51/6! lower than the actual value
while the expression~26! obtained for the nonequilibrium
enhancement is the first term of a series expansion. In p
ciple, better results can be obtained, both for the equilibri
and the nonequilibrium contributions for rigid boundaries,
considering higher-order Galerkin approximants.

The exact expression for the normalized nonequilibri
enhancement for two free boundaries,S̃NE

R (q̃) was studied in
a previous publication, where the sum of the series in
~24! was calculated exactly@29#. We showed that in the limit
L→` the sum of the series in Eq.~24! converges to the
exact ‘‘bulk’’ result: (s11)21(q̃42R)21 @cf., Eq. ~1!#. The
dependence of the nonequilibrium enhancement on the
mensionless wave numberq̃ was analyzed in detail. Fo
small q̃ we obtained@29#

S̃NE
F ~ q̃! ——→

q̃→0 17

20 160

1

s11
q̃2, ~27!

and for largeq̃

S̃NE
F ~ q̃! ——→

q̃→` 1

s11

1

q̃4
. ~28!

Equations~27! and~28! demonstrate the crossover fromq24

to aq2 behavior. Separating the two limiting behaviors the
is a maximum inS̃NE

F (q̃). For negativeR this maximum is
relatively flat, while for positiveR the maximum is very
03630
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sharp. The height of the maximum diverges asR→Rc . For
details and further comments, we refer to our previous p
lication @29#.

Similarly, from the first-order Galerkin approximation fo
the nonequilibrium enhancement with rigid boundaries, E
~26!, we obtain for smallq̃,

S̃NE
R ~ q̃! ——→

q̃→0 3

896~21s15!
q̃2, ~29!

and for largeq̃,

S̃NE
R ~ q̃! ——→

q̃→` 45

56

1

s11

1

q̃4
. ~30!

Just as for two free boundaries, the nonequilibrium enhan
ment exhibits a crossover from aq24 to aq2 behavior. Upon
comparing Eq.~28! with the asymptotic behavior corre
sponding to the ‘‘bulk’’ solution, Eq.~1!, we note that the
solution for free boundaries reproduces for largeq the cor-
rect limiting behavior, which is independent of the Raylei
number. The first-order Galerkin approximation for rig
boundaries reproduces this asymptotic behavior for largq,
except for a factor 45/56.

In Fig. 1 we show on a double-logarithmic scale the no
equilibrium enhancementS̃NE

R (q̃) as a function ofq̃, calcu-
lated from Eq.~26! for three different values of the Rayleig
number. In all examples to be presented in this paper, we
a value of the Prandtl numbers58, which approximately
corresponds to that of pure toluene at 20 °C@12#. The solid
curve corresponds to a positive Rayleigh numberR51700,
to be compared with the critical Rayleigh numberRc
.1750 in the first-order Galerkin approximation. The dash
curve corresponds to a value of the Rayleigh number clos

FIG. 1. First-order Galerkin approximation for the nonequili

rium enhancementS̃NE
R (q̃), given by Eq.~26! of a fluid with Prandtl

numbers58, as a function of the dimensionless wave numbeq̃
5qL for three values of the Rayleigh number:R51700 ~solid
curve!, R.0 ~dashed curve!, R5225 000~dotted curve!. For ref-
erence, the correct asymptotic ‘‘bulk’’ behavior, given by Eq.~28!,
is displayed as a dashed-dotted line.
5-7
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zero:R.0. The dotted curve corresponds to a large nega
Rayleigh numberR5225 000. The dashed-dotted straig
line in Fig. 1 shows the exact asymptotic behavior for la
q̃, (s11)21q̃24 as given by Eq.~1! for the structure factor
of the bulk fluid. From the results displayed in Fig. 1 w
observe that at larger values ofq̃, S̃NE

R (q̃) is proportional to

q̃24, independent of the Rayleigh number, in agreement w
Eq. ~29!. On the scale used in Fig. 1,S̃NE

R (q̃) is asymptoti-
cally almost indistinguishable from the exact asymptotic
havior, confirming that the Galerkin calculation is an exc
lent approximation method. Upon decrease ofq̃, S̃NE

R (q̃)

goes through a maximum and for very small values ofq̃,
S̃NE(q̃) decreases asq̃2, also independently ofR, in agree-
ment with Eq. ~29!. For positive R, S̃NE

R (q̃) develops a

prominent peak close toq̃c.3.12, which diverges asR
→Rc , as will be further discussed in Sec. VI. For negati
R, the maximum is relatively flat, in accordance with t
saturation effect of gravity on the nonequilibrium enhan
ment, already contained in expression~1! for the structure
factor of the fluid without any finite-size effects. Althoug
there are some numerical differences, the physical beha
of S̃NE

R (q̃) as a function of the wave number and the Ra
leigh number is similar to that earlier deduced for the case
free boundaries@29#. Regardless of the detailed nature of t
boundary conditions, a major effect of the additive no
terms in the fluctuating Boussinesq equations is the app
ance of ~fluctuating! patterns in the fluid, even below th
convective instability as discussed by some other invest
tors @35,36#.

Sengers and co-workers have measured the nonequ
rium fluctuations in liquid toluene@10,11# and in liquid
n-hexane@12#. These experiments correspond to Rayle
numbers from225 000 to2300 000 at dimensionless wav
numbers ranging fromq̃5640 down toq̃5345. The experi-
ments have provided an accurate confirmation of theq24

dependence of the intensity of nonequilibrium fluctuations
this range of wave numbers.

Giglio and co-workers have measured the intensity
nonequilibrium fluctuations for negative Rayleigh numbe
down to wave numbersq̃ of order unity with ultra-low-angle
light-scattering experiments@14,15#. They actually measured
the intensity of nonequilibriumconcentrationfluctuations in
a liquid mixture. However, due to the similar structure of t
underlying hydrodynamic equations, theq dependence of the
contribution of nonequilibrium concentration fluctuations
the structure factor in a liquid mixture is expected to
similar to theq dependence of the contribution of nonequ
librium temperature fluctuations to the structure factor o
one-component fluid@37,38#. Giglio and co-workers have
not only confirmed theq24 dependence of the nonequilib
rium structure factor, but they have also observed the cr
over to a region ofq̃ close to unity where the nonequilibrium
structure factor is independent ofq̃, in agreement with the
flat range indicated in Fig. 1 forS̃NE

R (q̃) at large negative
Rayleigh numbers.

Before closing this section, we note that the scattered
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tensity will be actually proportional toS(q), as given by Eq.
~22!, only for q@Ls

21 , whereLs was the thickness of the
scattered volume, or, in the geometry we are considering,
thickness of the laser beam. For extremely smallq, effects
related to the small thickness of the beam, not discusse
this paper, are expected to show up. These effects could h
per the actual observation by small-angle light-scattering
periments of the finite-size effects discussed in this sect
Fortunately, there is another experimental technique, nam
quantitative shadowgraphy, which is more suitable for
observation of effects on the nonequilibrium structure fac
due to the finite sizeL of the layer, and which we discuss i
the subsequent section.

V. CONSEQUENCES FOR SHADOWGRAPH
EXPERIMENTS

An alternative promising experimental technique for me
suring the intensity of nonequilibrium fluctuations is quan
tative shadowgraph analysis@39–43#. Instead of a laser
beam, an extended uniform monochromatic light source
employed to illuminate the fluid layer. Then many shado
graph images of a plane perpendicular to the tempera
gradient are obtained with a charge-coupled device dete
which measures the spatial distribution of intensityI (xi),
wherexi is a two-dimensional position vector in the imagin
plane. For each image, a shadowgraph signalI(xi) is defined
by

I~xi!5
I ~xi!2I 0

I 0
, ~31!

whereI 0 is the uniform intensity of the incident light, whe
there are no fluctuations in the index of refraction of t
sample. In practice,I 0 is obtained by averaging over man
shadowgraph pictures. Very recently, Trainoff and Cann
@44# have presented a detailed theoretical analysis of
quantitative shadowgraph method based on physical op
They studied not only the shadowgraph images produced
fluctuations below the convective threshold, but also
shadowgraph images produced by deterministic patte
above the threshold. With a paraxial approximation for t
propagation of light in the shadowgraph medium and
Fresnel approximation for the propagation of light in the
behind the cell, the spatial power spectrum of the shad
graph signal averaged over fluctuations,^uI(qi)u2&, can be
related to the structure factor as defined by Eq.~22!, such
that @43,44#,

^uI~qi!u2&5
4V

a2r2 S ]n

]TD
P

2

sin2S qi
2z

2k0
DS~qi,0!, ~32!

whereV is the sample volume illuminated by the light. In E
~32!, the sine term plays the role of an optical transfer fun
tion @43#. Trainoff and Cannell@44# have also evaluated
small modifications to Eq.~32! due to experimental effect
such as inhomogeneities in the illumination, angular spr
in the incident beam, or finite spectral bandwidth of the lig
source.
5-8
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BOUNDARY EFFECTS ON THE NONEQUILIBRIUM . . . PHYSICAL REVIEW E66, 036305 ~2002!
We observe that, by applying a two-dimensional Four
transform to the shadowgraph signal@40,41,43#, one can de-
duce the structure factor of the fluid as a function of the wa
numberq at q'50. Hence, there exists an equivalence b
tween small-angle light scattering and shadowgraphy, in
sense that both methods yieldS(qi5q,q'50). For light
scattering,q is the scattering wave number, whereas
shadowgraphyq is the modulus of the two-dimensional Fo
rier vector in the imaging plane. Thus, the characteristic f
tures of the nonequilibrium enhancement of the structure
tor, shown in Fig. 1, also apply to shadowgraph experime
Specifically, Vailati and Giglio @42# and Brogioli et al.
@43,45# have used the shadowgraph technique to measure
structure factor of the nonequilibrium fluctuations in som
aqueous solutions, resulting from concentration gradients
sociated with free diffusion. Indeed, the experimental str
ture factors exhibit the same characteristic features as
structure factor of the nonequilibrium fluctuations in a bina
liquid mixture subjected to a concentration gradient result
from an imposed temperature gradient as measured by
scattering@14,15#.

For positive Rayleigh numbers,S̃NE(q̃) strongly depends
on the parametere5(R2Rc)/Rc which measures the dis
tance from the Rayleigh-Be´nard instability. In Fig. 2 we
show the normalized nonequilibrium enhancement as a fu
tion of q̃ close toq̃c for two rigid boundaries, as calculate
from Eq.~26! for e520.02, relative to the critical Rayleigh
numberRc

R.1750 in the first-order Galerkin approximatio
For comparison, we also show in Fig. 2 the normalized n
equilibrium enhancement as a function ofq̃ for two free
boundaries, as calculated from Eq.~24! for the samee
520.02, relative to the critical Rayleigh numberRc

F

527p4/4 for free boundaries. We observe that the main d
ference between the solutions for free and rigid boundarie
that for the case of free boundaries the position of the m
mum is incorrectly displaced to lower values ofq̃. In addi-

FIG. 2. Nonequilibrium enhancement of the structure factor a

function of q̃ for positive Rayleigh number corresponding toe

5(R2Rc)/Rc520.02. Solid curve:S̃NE
R (q̃), given by Eq.~26!, for

the case of two rigid boundaries. Dashed curve: exactS̃NE
F (q̃),

given by Eq.~24!, for the case of two free boundaries. The plots a
for a fluid with Prandtl numbers58.
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tion, we note that the height of the maximum is larger for t
case of two free boundaries. As mentioned earlier, ‘‘no-sl
boundary conditions are more realistic for a fluid layer b
tween two rigid plates.

Wu et al. @39# have used the shadowgraph technique
measure the nonequilibrium structure factor in a layer
fluid carbon dioxide, at a pressure of about 3 MPa, near
convective instability. Figure 3 in the paper of Wuet al. @39#
shows an experimental structure factorS(q) with a shape
very similar to our solution displayed in Fig. 2. We sha
make a quantitative comparison with the measurement
Wu et al. in Sec. VII, when discussing the power of therm
fluctuations. We conclude that our solution of the lineariz
fluctuating Boussinesq equations for the nonequilibriu
structure factor is consistent with the characteristic featu
of the nonequilibrium structure factor observed in expe
ments for both negative and positive Rayleigh numbers.

VI. NONEQUILIBRIUM FLUCTUATIONS CLOSE TO THE
CONVECTIVE INSTABILITY

The nature of thermal noise near the convective instab
has been the subject of studies by many investigators@22–
26,31#. Hence, it is of interest to make a comparison of tho
results with our solution for the intensity of temperature flu
tuations for thermal nonequilibrium states. Zaitsev a
Shliomis @31# were the first to compute thermal fluctuation
in a fluid layer subjected to a stationary temperature grad
near the convective instability. Using linear perturbati
theory they found that the structure factor diverges asRc
2R)21. The same divergence follows from our solution
both for the case of free boundaries and for the case of r
boundaries. To reproduce this divergence we first calcu
the wave numbers,q̃max

F andq̃max
R , of the fluctuations that are

maximally enhanced for the case of free boundaries and
the case of rigid boundaries, respectively. The quantityq̃max

F

was already evaluated in a previous publication@29#, where
we showed that it has an expansion of the form

a
FIG. 3. Double-logarithmic plot of the absolute value of th

difference between the critical wave numberq̃c and the position of

the maximum in the nonequilibrium structure factorq̃max, as a
function of 2e. The solid line is for the case of two rigid bound
aries. The dashed line is for the case of two free boundaries.
plots are for a fluid with Prandtl numbers58.
5-9



JOSÉM. ORTIZ de ZÁRATE AND JAN V. SENGERS PHYSICAL REVIEW E66, 036305 ~2002!
q̃max
F 5q̃c

FH 11
81

4 (
N52

`
~N221!~112N2!2~12cosNp!

N2@~112N2!3227#2
e21O~e3!J

.
p

A2
$112.84731024e2%. ~33!

For the case of two rigid boundaries, we find from from Eq.~20! that the position of the maximum,q̃max
R , close to the

instability may be expanded as

q̃max
R 5q̃c

RH 11
14

27

~ q̃c
2110!2

Rc
Rq̃c

2~3q̃c
2134!

q̃c
41384q̃c

214104

q̃c
2s15

e1O~e2!J
.3.1165H 11

0.154

s10.515
eJ , ~34!
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where, inside the curly brackets in Eq.~34!, the critical wave

numberq̃c
R.3.1165 corresponds to the first-order Galerk

approximation for two rigid boundaries. It is interesting

note that the difference between the wave numberq̃max cor-

responding to the maximum and the critical wave numberq̃c

has a quadratic dependence on the distancee to the instabil-
ity for the case of free boundaries, while this difference d
pends linearly one for the case of two rigid boundaries. I
the case of free boundaries, the maximum in the struc
factor moves tolarger wave numbers ase goes to lower
negative values~away from the instability!. In the case of
rigid boundaries, the maximum in the structure factor mo
to smallerwave numbers ase goes to lower negative values
In Fig. 3, we have plotted on a double-logarithmic scale

absolute value of the differenceuq̃max2q̃cu as a function of
2e for two rigid boundaries~solid line! and for two free
boundaries~dashed line!. The curves displayed in Fig.
were obtained numerically from Eqs.~24! and~26!, confirm-
ing the linear dependence one for rigid boundaries as op
posed to a quadratic dependence one for free boundaries.
Even more significantly, the effect is orders of magnitu
larger for rigid boundaries than that for free boundaries.

It is interesting to note that the wave numberq̃max corre-
sponding to the maximum intensity of the fluctuations can

be identified with the wave numberq̃m corresponding to the
maximum growth rate of perturbations around the ste
conductive state evaluated by other investigators@46–48#,

although both become equal toq̃c at R5Rc . This issue is
discussed in more detail in the Appendix.

Having determined the position of the maximum, we c
study the divergence in the height of the maximum as
convective instability is approached. For the case of two f
boundaries, we substitute Eq.~33! into Eq.~24! and conclude
that the structure factor, which is proportional to the intens
of the scattered light, diverges when the convective insta
ity is approached, such that
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S̃NE
F ~ q̃max!5

1

s11 H 54p2
21

e

16

p6 (
N52

`
12cosNp

N2@~112N2!3227#

1O~e!J . ~35!

For the case of two rigid boundaries, substituting Eq.~34!
into Eq. ~26! we conclude that the structure factor, in th
first-order Galerkin approximation, diverges when the co
vective instability is approached, such that

S̃NE
R ~ q̃max!5

1

s1
5

q̃c
2

H 5

6Rc
R

21

e
1O~1!J . ~36!

In both cases, we recover the linear divergence ofS̃NE as a
function of (R2Rc)

21 obtained by Zaitsev and Shilomi
@31# and confirmed by Swift and Hohenberg@22,26#. Ex-
tremely close to the instability nonlinear effects will cau
a smearing out of the transition, but this effect will on
be noticeable for very small values ofueu<2.931025

@22,26,49–51#. Hence, observation of the linear divergen
of the intensity of the fluctuations is possible in experime
@39#. Deviations from linear fluctuation theory have been o
served by Schereret al. @52# in the case of electroconvection

For the case of two free boundaries, the approximat
scheme used by Zaitsev and Shliomis@31# and by Swift and
Hohenberg@22# is equivalent to retaining only the termN
51 in the series expansion~24! for S̃NE

F (q̃). Note that, for
N51, when R is close toRc and qi is close toqc , the
denominator in the termL1

F(q̃i) given by Eq. ~11! ap-
proaches zero. Therefore, close to the convective instab
the term withN51 is much larger than the terms with an
other value ofN. Consequently, whenR&Rc and q.qc ,
truncating the series~24! at N51 yields a very good ap-
proximation. We thus deduce from our solution for the ca
5-10
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TABLE I. Values of the parameters in the SH approximation, Eq.~39!, for the nonequilibrium structure
factor.

Rc q̃c j̃0
2 H̃(s)

Freea 27p4

4
5657

p

A2
52.221

2

A3p2
50.117

8

p2

1

s11

Rigid b 1750 3.1165
1

q̃c

A28~3q̃c
2134!

27Rc
50.062

5

6

q̃c
2

q̃c
2s15

Rigid c 1708 3.1163 0.062

aThe values for two free boundaries are exact.
bValues based on a first-order Galerkin approximation.
cExact values obtained from the literature@26#.
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of free boundaries that the nonequilibrium structure factor
measured in low-angle light scattering or shadowgraph
periments, can be written as

SF~ q̃!5
8SES̃NE

0

p2~s11!

q̃2

~ q̃21p2!32Rq̃2
, ~37!

where the equilibrium contribution in Eq.~23! has been ne-
glected. This is usually called the most-unstable-mode
proximation in the literature@22,31#. Because of the facto
N2p2 in the denominator of the series expansion~24!, the
most-unstable-mode approximation actually continues to
an excellent approximation for arbitrary Rayleigh numbe
especially for relatively smallq̃. For the case of rigid bound
aries, the first-order Galerkin approximation, Eq.~26!, al-
ready represents a most-unstable-mode approximation.
glecting the equilibrium contribution, as was done in E
~37!, we obtain from Eqs.~20! and~26! for rigid boundaries,

SR~ q̃!5
SES̃NE

0

s1
~ q̃2110!~ q̃2112!

~ q̃2112!21360

3
27q̃2

28~ q̃2110!@~ q̃2112!21360#227q̃2R
.

~38!

Comparing Eq.~37! for free boundaries with Eq.~38! for
rigid boundaries, the similar structure of both expression
evident, as was already mentioned in Sec. III.

The denominator in the last term of Eq.~37! for free
boundaries, as well as the denominator in the last term of
~38! for rigid boundaries, are zero when the Rayleigh nu
ber and the dimensionless wave number are equal to
corresponding critical values,R5Rc andq̃5q̃c . Expanding,
in both cases, the denominator in powers ofq̃2 aroundq̃c

2 ,
one obtains

S~ q̃!5
SES̃NE

0

Rc

H̃~s!

j̃0
4~ q̃22q̃c

2!22e
, ~39!
03630
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where we have introduced the functionH̃(s) of the Prandtl
number and, following Hohenberg and Swift@26#, the pa-
rameterj̃0

2 ~see Table I!. Equation~39! is the so-called Swift-
Hohenberg~SH! approximation to the nonequilibrium struc
ture factor@22,26#. It is worth noting that Eq.~39! is valid for
both free or rigid boundaries, but the numerical values of
constantsRc , qc , andj̃ 0

2, and the amplitude functionH̃(s),
do depend on the boundary conditions. In the first two ro
of Table I we present the values obtained for the consta
and for the functionH̃(s) in the solution of the linearized
fluctuating Boussinesq equations for free and rigid bou
aries. In the third row of Table I we present, for the case
rigid boundaries, the numerical values of the parametersRc ,
q̃c , and j̃ 0

2, obtained from the literature@26#. In the case of
free boundaries, we find exact analytical agreement betw
the values ofRc , q̃c , and j̃ 0

2 displayed in Table I and the
corresponding literature values@26#. For the case of rigid
boundaries, comparing the second and the third rows
Table I, we see a fairly good agreement between the num
cal literature values and the analytical values obtained h
based on a first-order Galerkin approximation.

VII. POWER OF THERMAL FLUCTUATIONS

To further compare our results with the SH model, w
consider the behavior of the vertical average of the powe
the thermal fluctuations,̂dT2&, close to the instability. The
mean-square amplitude^dT2& of the temperature fluctuation
can be related to the structure factor by Eq.~9!, such that

^dT2&5
1

LE0

L

dẑ u* ~xi ,z,t !•u~xi ,z,t !&

5
1

a2r2

1

LE0

L

dzE d2q

~2p!2
S~q,z,z!. ~40!

Due to the horizontal translational symmetry of the proble
this quantity does not depend on the pointxi in the horizontal
plane at which is evaluated on the timet at which is calcu-
lated. For the case of ‘‘slip-free’’ boundary conditions, su
stituting z5z8 in Eq. ~10! for S(q,z,z8) causes a problem
5-11
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associated with the short-range equilibrium contributio
d(z2z8); but since the quantity Eq.~22! that is experimen-
tally observed actually depends on a double integral onz and
z8, this problem is not relevant. Therefore, we can saf
neglect the equilibrium contribution in the calculation
^dT2&. Substituting Eq.~10! into Eq.~40!, we thus obtain for
the case of two free boundaries@29#,

^dT2&5
SES̃NE

0

a2r2L~s11!

1

2p (
N51

` E
0

` q̃2qdq

~ q̃21N2p2!32Rq̃2
.

~41!

The integral in Eq.~41! can be performed analytically, bu
the result is long and not particularly interesting. Asympto
cally close to the convective instability we find

^dT2&.
SE~S̃NE

0 !c

a2r2L~s11!

1

4p2

2A3

27L2A2e
. ~42!

In Eq. ~42!, the symbol (S̃NE
0 )c means that the normalize

amplitude of the nonequilibrium enhancement has to
evaluated at the critical temperature gradient. Using Eqs.~2!
and~3!, neglecting the contribution of the adiabatic tempe
ture gradient, and using again the thermodynamic rela
a2DT5@(g21)/g#lT¸T /T, we rewrite Eq.~42! as

^dT2&.kBT
~DTc!

2

rLn2

A3

54p2

s2

s11

1

A2e
, ~43!

whereDTc is the temperature difference which correspon
to the critical Rayleigh number. The behavior of the power
the thermal fluctuations,̂dT2&, has been studied by sever
authors@39,41# in the framework of the standard SH mode
asymptotically close to the instability this quantity is e
pressed as@39,41#

^dT2&.kBT
~DTc!

2

rLn2

sq̃cc̃
2

2j0t0Rc
3

1

A2e
, ~44!

wherec̃53q̃cARc, j0, andt0 are dimensionless paramete
appearing in the standard SH model. These parameters
pend on the boundary conditions, andt0 also depends on th
Prandtl number. Numerical values of these parameters,
free and rigid boundaries, can be found in Table I of Hoh
berg and Swift@26#. Substituting into Eq.~44! the values
found in that table for free boundaries, we obtain exact
merical agreement with our current Eq.~43!. We conclude
that, for the case of free boundaries, our exact solution
S(q), when evaluated close to the instability, shows perf
agreement with the standard SH model, not only for the
pendence of the structure factor onq, but also for the mag-
nitude of the amplitude of the nonequilibrium fluctuations

For the case of rigid boundaries, we consider the div
gence of^dT2& at the convective instability obtained in th
first-order Galerkin approximation, Eq.~19!. We first observe
that, since the Galerkin approximation is a single-mode
proximation, we do not encounter any problems associa
03630
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with the short-range equilibrium part when substitutingz
5z8. We also note that the integration onq of L0

R(q) is
complicated, and since we are really interested only in
asymptotic behavior close to the instability, we prefer to u
the SH approximant to the first-order Galerkin, which
easier to handle. Moreover, we have checked numeric
that for a Prandtl numbers58 and fore within 20.01 from
the instability, the difference between^dT2& calculated with
the SH approximation and the same quantity calculated w
the full Galerkin approximation, is less than 1%. Thus, w
substitute Eq.~39! into Eq.~40!, taking into account that Eq
~39! is obtained through a double integration onz andz8 @see
Eq. ~22!# while Eq. ~40! requires us to first substitutez5z8
and then to average vertically. Evaluating the asymptotic
havior of the resulting integral close to the instability, w
obtain

^dT2&5
SES̃NE

0

a2r2L

H̃~s!

L2Rc

6

5

p

j̃ 0
2A2e

1

~2p!2

3Fp

2
1arctanS j̃ 0

2q̃c
2

A2e
D G ,

.kBT
~DTc!

2

rLn2

1

4j̃ 0
2Rc

s2

~s10.515!

1

A2e
, ~45!

where we have substituted the functionH̃(s) quoted in
Table I for the case of rigid boundaries. Comparing Eq.~45!
with the result obtained by substituting into Eq.~44! the
parameters corresponding to rigid boundaries in the stan
SH approximation~cf. Table I of Hohenberg and Swift@26#!
we observe the following.

As in the case of free boundaries, we recover the div
gence of^dT2& as 1/A2e, predicted by the standard SH
model and confirmed experimentally by Wuet al. @39#.

We also recover, in good approximation, the same kind
dependence of̂ dT2& on the Prandtl number: a facto
s2/(s10.515), to be compared withs2/(s10.5117) pre-
dicted by the standard SH model.

The prefactor for the total power of the thermal noi
calculated with our model, Eq.~45!, for rigid boundaries is
3% smaller than the same quantity calculated with the s
dard SH model. This small difference shows that the Ga
kin approximation proposed is this paper is a very good
proximation indeed.

The experimental data presented by Wuet al. @39# were
reanalyzed by Bodenschatzet al. @41# who concluded that
the experimental results were consistent with the predicti
of the SH model. Since our first-order Galerkin differs on
3% from the SH model, we conclude that our approximat
yields also a satisfactory representation of these experime
results.

Many authors@23–26# have represented theq dependence
of the structure factor near the instability in terms of
Lorentzian profile centered atq̃c with a width proportional to
e, and Wuet al. @39# have analyzed their experimental da
in terms of such a Lorentzian profile. We remark that bo
5-12
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the exact solution for free boundaries and the first-or
Galerkin solution for rigid boundaries do not yield a Loren
zian profile close to the instability. Moreover, a Lorentzi
does not recover the proper asymptotic behavior, implied
in Eqs.~27!–~30!, for either smallq or largeq. It even leads
to an apparent divergence when one tries to calculate
power of the fluctuations by integratingS(q) over all two-
dimensional wave vectors@26,39#.

The SH approximation has been widely used in the lite
ture to study the fluctuations close to the convective insta
ity. We conclude this section by comparing the SH appro
mation with the Galerkin approximation derived in th
paper. To do so, we have plotted in Fig. 4 the Galerkin
proximation for the nonequilibrium enhancementS̃NE

R (q̃) of
the structure factor~solid curve!, together with the corre-
sponding SH approximation calculated with Eq.~39! and the
parameter values listed in the second row of Table I~dashed
curve!. Both curves correspond tos58 ande520.01. For
reference, we have also plotted in Fig. 4 the exact result
the bulk structure factor. A simple examination of this figu
shows that, although SH represents the maximum of
structure factor quite well, it does not reproduce the pro
asymptotic behaviors for large or smallq̃. Although the SH
approximation goes asq̃24 for large q, the prefactor multi-
plying this q̃ dependence is smaller than the correct val
which should be (s11)21. We note that the Galerkin ap
proximation is, instead, only a few percent off. In the limit
small q, the SH approximation reaches a finite const
value, while the Galerkin approximation goes to zero asq2.
Recent measurements obtained by Oh and Ahlers@53# for the
nonequilibrium structure factor of sulfur hexafluoride belo
the Rayleigh-Be´nard instability turn out to be consistent wit

FIG. 4. Normalized nonequilibrium enhancementS̃NE
R (q̃) of the

structure factor of a fluid withs58, as a function of the dimen
sionless wave number near the convective instability@e5(R
2Rc)/Rc520.01# for rigid boundaries. The solid curve represen
the first-order Galerkin approximation given by Eq.~26!. The
dashed curve represents the corresponding SH approximation
the parameter values listed in the second row of Table I. The do
line represents the exact expression for the nonequilibrium struc
factor of the bulk fluid, which should be the correct asymptotic lim

for large q̃.
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our theoretical prediction thatS(q) should exhibit a cross-
over from aq24 behavior for largerq to a q2 behavior for
small q.

VIII. CONCLUSIONS

In this paper we have applied the Galerkin method so
to calculate the static structure factor of a nonequilibriu
fluid from the linearized random Boussinesq equations,
both negative and positive values of the Rayleigh numb
using ‘‘no-slip’’ boundary conditions. Explicit expression
for the nonequilibrium enhancement of the structure facto
the Galerkin approximation have been presented. The co
quences for low-angle light-scattering and shadowgraph
periments have been elucidated. The resulting expres
reproduces theq24 dependence of the nonequilibrium stru
ture factor predicted theoretically@2–4# and confirmed ex-
perimentally@10–13# for negative Rayleigh numbers, it ac
counts for the saturation of the nonequilibrium enhancem
of the intensity of the fluctuations at small wave numbe
observed by Giglio and co-workers@14,15,42,43# and it is
consistent with the experimental observation by Ahlers a
co-workers @39,41,53# of the structure factor close to th
convective instability. We have thus provided a unified a
proach for describing nonequilibrium fluctuations for bo
negative and positive values of the Rayleigh number, p
vided thatR,Rc . A major conclusion is that fluctuating hy
drodynamics with simple additive thermal noise is enough
account for the nonequilibrium structure factors measu
experimentally. Hence, at least for the case of Raylei
Bénard convection, it does not appear necessary to look
‘‘fancy’’ sources of noise, such as multiplicative, correlate
or colored noise@35,54#.

The nonequilibrium structure factor obtained here for t
case of two rigid boundaries exhibits qualitatively the sa
behavior as that deduced from an exact result derived for
case of two free boundaries in a previous publication@29#.
The typicalq24 divergence of the nonequilibrium structur
factor crosses over to aq2 dependence for extremely sma
scattering angles. Separating both behaviors there is a m
mum in the scattered intensity, indicating that fluctuatio
with a particular wave vector are maximally enhanced.
the convective instability is approached the height of
maximum diverges. The wave numberq̃max of the fluctua-
tions that are maximally enhanced is close to the criti
wave numberq̃c for the convective instability and depend
on the actual boundary conditions considered. Fluctua
patterns do appear in a fluid subjected to a stationary t
perature gradient below the convective instability, even
negative Rayleigh numbers. To address the question
these fluctuating patterns below the Rayleigh-Be´nard insta-
bility evolve into convection rolls above the instability re
quires a theoretical approach that goes beyond the linear
Boussinesq equations considered in the present paper@32#.
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APPENDIX: WAVE NUMBER OF MAXIMUM GROWTH
RATE OF HYDRODYNAMIC PERTURBATIONS

In Sec. VI we derived an expression for the wave num
q̃max corresponding to the maximum enhancement of the
tensity of the nonequilibrium fluctuations, as a function
e5(R2Rc)/Rc and of the Prandtl numbers. Another inter-
esting quantity is the wave numberq̃m , corresponding to the
maximum growth rate of perturbations around the quiesc
conductive hydrodynamic state in the fluid layer@30,33,46–
48#. While both q̃max and q̃m approachq̃c as e→0(2), the
two wave numbers differ for finite negative values ofe and
this difference depends on the Prandtl number.

To illustrate the difference betweenq̃max, the wave num-
ber of maximum enhancement of fluctuations, and the w
number q̃m , corresponding to the maximum growth rat
we first consider the case of two free boundaries, for wh
there exists a well-known analytic expression forg̃(q̃i)
5g(q̃i)n/L2, the dimensionless linear growth rate of th
most unstable mode@30,33#

g̃~ q̃i!52
~ q̃i

21p2!~s11!

2s

3H 12A12
4s

~s11!2 F12
q̃i

2R

~ q̃i
21p2!3G J .

~A1!

Note that we are using the notationg(q̃i) for the linear
growth rate, instead of the traditionals to avoid confusion
with the Prandtl number. We observe in Eq.~A1! that the
condition of marginal stabilityg̃(q̃i)50 is the same condi
tion obtained in the main text from an analysis of the s
chastic Boussinesq equations for the case of two free bo
aries. Thus, to have the possibility of the linear growth r
to be zero, the Rayleigh numberR has to be larger than th
critical Rayleigh number for free boundaries,Rc527p4/4.
At R5Rc the growth rate reaches the value zero at a sin
finite value of the wave numberq̃i5q̃c5p/A2. For R
,Rc , the maximum growth rate given by Eq.~A1! is always
negative, independent ofs or q̃i ; this means that the con
ductive solution is stable. ForR.Rc there are values ofqi
for which the corresponding growth rate is positive, indic
ing that an instability develops in the system. A plot of E
~A1! shows that forR&Rc there is a maximum of the growt
rate for a particular valueq̃i5q̃m . At R5Rc , the maximum
is located atq̃c and the value of the growth rate at the ma
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mum is zero. From Eq.~A1! one readily deduces an analyt
cal expression for the position of the maximum atR&Rc ,

q̃m5q̃cF11
1

4
e1

3s212s13

16~s11!2
e21O~e3!G . ~A2!

On comparing Eq.~A2! with Eq. ~33!, we already observe
quite clearly the difference between the wave number
maximum growth rate of hydrodynamic perturbations,q̃m ,
and the wave number,q̃max of fluctuations maximally en-
hanced. From Eq.~33! we see thatq̃max does not contain the
term linear ine in the case of free boundaries.

For the case of rigid boundaries, the maximum grow
rate cannot be calculated analytically, but has been evalu
numerically by Domı´nguez-Lermaet al. @48#. However, it is
possible to calculate analytically a Galerkin approximation
the linear growth rate, much in the spirit of the calculatio
presented in the main text of the paper. To perform this
proximate analytical calculation we consider the determin
tic Boussinesq equations~thus dT5dQ50), Fourier trans-
formed in the horizontal plane, but not in time, so that fro
Eqs.~5! in the main text we obtain

]

]t
@Dw~ t,qi ,z!#5n@D 2w~ t,qi ,z!#2qi

2agu~ t,qi ,z!,

~A3a!

]

]t
u~ t,qi ,z!5DT@Du~ t,qi ,z!#2¹T0w~ t,qi ,z!,

~A3b!

where the differential operatorD was defined in Eq.~8!.
Now we look for approximate solutions to the determinis
Eqs. ~A3! whose dependence on the vertical coordinatez is
expressed in terms of the same Galerkin polynomials use
Sec. III for the solution of the stochastic Boussinesq eq
tions. Thus we consider perturbations of the form

w~ t,qi ,z!5exp@g~qi!t#w0~qi!S z

L
2

z2

L2D 2

,

u~ t,qi ,z!5exp@g~qi!t#u0~qi!S z

L
2

z2

L2D , ~A4!

which, evidently, do fulfill the no-slip boundary condition
Eqs. ~12!. To calculate an approximate solution to Eq.~A3!
of the form given by Eq.~A4!, we substitute Eq.~A4! into
Eq. ~A3!, and project the first resulting equation onto the fi
Galerkin polynomial and the second equation onto the s
ond Galerkin polynomial. After switching to dimension
less variables, we obtain the following set of linear alg
braic equations for the dimensionless amplitudesw̃0(q̃i)
5(L/DT)w0(qi) and ũ0(q̃i)5(agL3/nDT)u0(qi):
5-14
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S g̃~ q̃i!~ q̃i
2112!

630
1

~ q̃i
4124q̃i

21504!

630
2

q̃i
2

140

2
R

140s
g̃~ q̃i!

30
1

~ q̃i
2110!

30s

D S w̃0~ q̃i!

ũ0~ q̃i!
D 50, ~A5!

where the dimensionless growth rate is againg̃5gn/L2. To have a solution of Eq.~A5! different from zero, the determinan
of the matrix has to be zero. From the corresponding secular equation, we solve for the linear growth rateg̃, obtaining

g̃~ q̃i!52
1

2

~ q̃i
2110!@s1Ã~ q̃i!#

sÃ~ q̃i!
H 12A12

sÃ~ q̃i!

7@s1Ã~ q̃i!#
2 F282

27q̃i
2R

~ q̃i
2110!~ q̃i

4124q̃i
21504!

G J , ~A6!
om
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where the functionÃ(q̃i) is given by

Ã~ q̃i!5
~ q̃i

2110!~ q̃i
2112!

~ q̃i
4124q̃i

21504!
. ~A7!

Actually there are two solutions for the growth rateg̃(q̃i); in
Eq. ~A6! we have displayed the larger one. We observe fr

Eq. ~A6! that the condition of marginal stabilityg̃(q̃i)50 is
the same condition, Eq.~21!, obtained in the main text from
an analysis of the stochastic Boussinesq equations in
first-order Galerkin approximation. We recall that for E
~21! to hold, the Rayleigh numberR has to be larger than
critical Rayleigh numberRc.1708, which is the first-orde
Galerkin approximation to the critical Rayleigh number f
rigid boundaries. AtR5Rc the growth rate reaches the valu

zero at a single finite value of the wave number,q̃i5q̃c

.3.1163. ForR,Rc , the maximum growth rate, given b

Eq. ~A6!, is always negative, independent ofs or q̃i , mean-
ing that the conductive solution is stable. ForR.Rc there
are values ofqi for which the corresponding growth rat

g̃(q̃i) is positive, so that the conductive solution becom
unstable.

A plot of Eq. ~A6! is qualitatively very similar to a plot of
Eq. ~A1! for the case of free boundaries; it shows that

R&Rc there is a maximum of the growth rateg̃(q̃i) for a

particular valueq̃i5q̃m . At R5Rc , the maximum is located

at q̃c and the value of the growth rate at the maximum

zero. Taking the derivative ofg̃(q̃i) with respect toq̃i , we
can deduce form Eq.~A6! an analytical expression for th
position of the maximum atR&Rc . Specifically, we obtain

q̃m5q̃c@11a~s!e1O~e2!#, ~A8!

where some long algebraic calculations yield
03630
he

s

r

a~s!5
35~ q̃c

2112!4~ q̃c
2110!2

12q̃c
6~61 987q̃c

41165 730q̃c
2116 132 820!

3
21~ q̃c

2112!s15~ q̃c
224!

q̃c
2s15

.
0.339~s10.063!

s10.515
. ~A9!

The wave number corresponding to the maximum of
linear growth rate has been investigated numerically
Domı́nguez-Lermaet al. @48# for the case of rigid bound-
aries, who have proposed for the coefficienta(s) in Eq.
~A8! the empirical equation

a~s!50.04941
0.295s

s10.509
. ~A10!

In Fig. 5 we have plotteda(s) as a function of the Prandt

FIG. 5. Values of the linear coefficienta(s) in the expansion,

Eq. ~A8!, for the maximum wave numberq̃m of the hydrodynamic
perturbations. Solid curve, obtained analytically from a Galer
approximation@Eq. ~A9!#. Dotted curve, calculated numerically b
Domı́nguez-Lermaet al. @48#. Dashed curve, linear coefficient i

the expansion, Eq.~34!, for the wave numberq̃max of maximum
enhancement of fluctuations.
5-15



te

er
m
o

be

r-
r
a

si-
as a

.
it

ore,
ve
-

ave
d
on-
ow-
ve

ot
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number. The solid curve represents Eq.~A9!, obtained here
analytically using a Galerkin approximation and the dot
curve represents the empirical relationship, Eq.~A10!, pro-
posed by Domı´nguez-Lermaet al. @48#. A simple inspection
of Fig. 5 shows that the Galerkin method provides a v
good approximation for the wave number of the maximu
growth rate of hydrodynamic perturbations; for the range
Prandtl numbers displayed in the figure, the difference
tween the value ofa(s) from our Galerkin approximation
and from the numerical results of Domı´nguez-Lermaet al. is
less than 2%.

We can compare Eqs.~A8!–~A10! for the wave number
qm of maximum linear growth rate of hydrodynamic pertu
bations with Eq.~34! in the main text for the wave numbe
qmax of fluctuations maximally enhanced. We observe th
although atR5Rc both maxima are located atq̃c , for R
ev

s

s,

w,

s,

M

03630
d

y

f
-

t,

&Rc significant differences do appear between their po
tions. To show these difference we have added in Fig. 5,
dashed curve, the value ofa(s) deduced from Eq.~34! for
the wave numberqmax of fluctuations maximally enhanced
We observe in Fig. 5 that the difference is important and
increases with the Prandtl number. As commented bef
this difference is mathematically due to the fact that the wa
numberqm of maximum growth rate is obtained from solv
ing the deterministic Boussinesq equations, while the w
numberqmax of fluctuations maximally enhanced is obtaine
from solving the stochastic Boussinesq equations. We c
clude that the quantity experimentally accessible for shad
graph of light scattering below the instability, is the wa

number q̃max of fluctuations maximally enhanced and n

q̃m .
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